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REULARITY OF FUNDAMENTAL SOLUTIONS OF HYPERBOLIC EQUAfTIONS

by

Avner Friedman

Introduction.

Fundamental solutions play a decisive role in the method of Hadamard [11] for

solving the Cauchy problem for hyperbolic equations with variable coefficients, of

the second order. In the case of analytic coefficients, he constructed the fun-

damental solution as a series of functions, each term being determined by the

previous ones by solving fairly simple differential systems. Convergence of the

series is proved by employing the method of majorants of Cauchy.

For higher order hyperbolic equations with constant coefficients, which are

homogeneous in the highest derivatives, the fundamental solution was given by

Herglotz [12] in a closed form for m even, m > n ( m is the order of the

equation and n is the number of space-dimensions). A closed form was later

given by Petrowski [17] for m > n , and by F. John [13] and Gelfand-Shapiro [9]

(see also [10; Chapter 1]) for all mn . More recently that form was derived by

Bororikov (2] as a consequence of a general formula for fundamental solutions of

partial differential equations with constant coefficients.

Partially supported by Contract Nonr 710 (16) (R 044 00o4) between the Office
of Naval Research and the University of Minnesota.
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Recently, Babitch [1], extending the scheme of Gelfand-Shapiro, has con-

structed fundamental solutions for hyperbolic equations with analytic co-

efficients of any order, by representing them as series G.- Efukfkda (inte-

gration on a parameter a ). The method depends on the construction of some special

solutions ("quasi" plane-waves) which are employed in the successive construction

of the sequences uk' fk . Convergence is proved by generalizing the proof of

Hadmard [11]. Using this construction, Babitch proved that the fundamental so-

lution G with pole at a point (O,x0) is analytic at all points (t,x)

(0 < t < f., E sufficiently small) which do not lie on the bicharacteristics through

(0,x0 ) (i.e., on the characteristic conoid with vertex (o, x0)). This result may

also be formulated in the following way: (The strict) Huygen's principle is

valid for the property of analyticity of solutions.

Babitch also proved that for sufficiently smooth coefficients (and not

necessarily analytic), the fundamental solution is differentiable up to any given

order at the points (t,x) as above. Finally, he extended all the above results

to hyperbolic systems of any order.

The result about the differentiability of the fundamental solution was

previously proved by Courant-Lax [3] and by Lax [14], by different methods, for

first order hyperbolic systems.

The purpose of the present paper is to extend the results of Babitch in the

following way: We consider classes C(M q consisting of all the Cd functions

(in sane set) whose q-th derivatives are bounded by Hq Mq for all q > 1

(H is a constant depending on f), where Mq is a given sequence olnumbers

satisfying

(-)MAh : Mk for all 0 < h < k <o (A constant).
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(*)3
After the manuscript ws completed. it cme to our attention that most of the

results of Babitch (1] were also obtained, independently., by D. Ludwig, "kact

and asymptotic solution of the Cauchy problem", Cm. Pure Al. Math., vol. 13

(196Q), PP. 473-5W.



We then prove that if the coefficients of the hyperbolic equation belong to

C[M 3 , then the fundamental solution belongs to CAq ) in any set lying in

0 < t < , which excludes the bicharacteristics through (0,x O) , where (with

defined by (3.28))
q

A *3q 2qMq
M < -r I , and if M = q! then =q!
q - q! q. q q

For M = q! we thus get a new proof for the analytic case considered by Babitch.

q

Our procedure starts (as that of Hadsma-d and Babitch) by constructing "quasi"

plane-waves and then sequences uk' fk " However, we stop at a certain k = p

p

and proceed to evaluate derivatives f or u -E kfk (or fSda) and of
k-0

u = G. - d' (where 0 - fG dO" ) separately. The derivation of the estimates for the

uk  is technically the most lengthy step in our proof. It employs techniques

A
which we used in earlier works [4] - [7]. As for u , it satisfies a certain

A
hyperbolic equation and, to evaluate u we employ well known energy inequalities.

In estimating I9G, we take p to be dependent on r (in fact, p - r + do ;

d depending on m,n

We briefly describe the structure of the paper:

In,.. J1, we prove auxiliary lemmas to .the effect that various- nonlinear oprations

re closed in classes C(14) . In J2 we solye the CacW problm for 'gneralq
first order nonlinear equations within the class C("4 , i.e., ,i. .prcaw (horeaq
1). that if all the datt and the equation belong to classes C(M1) , then the B

is true of the solution.
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In f 3 we write down the formal procedure of constructing a fundsental

solution in the analytic case and then state the main theorem (Theorem 2) of

the paper. A theorem (Theorem 3) on interior estimates for hyperbolic equations

(analogous to the main theorems in [4](5] for elliptic and parabolic equations) is

proved inf 4. The proof of Theorem 2 is given in f 5. It uses the results of

§ ji, 4. In S 6 we prove (Theorem 4) Huygen's principle for the property of

smoothness in the C[Mq] - sense, and also mention briefly the case of hyperbolic

systems of any order.

1. Auxiliary Lemmas

Let D be an open set, or the closure of an open set, in the n-dimensional

euclidean space with coordinates x = (xl, ... , x) • Let MqH) be a monotone

increasing sequence of (positive) numbers with M> 1 , which satisfy for soae

constant A and all 0 < p:< q < c,

(1.1) (q) Mqp M Mq
p pq-p- q

Taking, in particular, p = 0 and p = 1 we conclude:

(1.2) Mq > A q Mq Mq > (A1 )q q! (A, constant)

By C(Mq ; D) we mean the class of d* (infinitely differentiable)

functions f(x) on D which satisfy for some constants HOOH (depending on f)

(1.3) jDq f€x) I _S Ho~ Hq ( < q <.. •
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Here Dq denotes any partial derivative ... The class
x

C(q. ; D) consists of all the functions which are analytic in D, the closure of

D.

If f depends on a parameter X , we say that f(x,>.) belongs to C(M4 ; D)

uniforly with respect to X , if (1.3) holds with HK0 H independent of X.

If (1.2) is replaced by

ID qf(x)1 HO (o < q < a)

ID q (x)l H qn' ' Mq. a < q < .

for some integer a > 0 , then the class is denoted by C(M q& ; D] . Pbr

a < 0 , the class C(M q_ ; D) is defined by (1.3) with Mq replaced by M

For conveniency we set M - 1 if q < 0 . We then can express (1.4) inq

the equivalent form:

11 f(x) I M . .(o < q < ).
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LemA I. Let Ul, ... , uh be functions of x e D which satisy the

inequalities (1 < i < h)

rDx ui~) W H0  (0 < r < a)

r r-a
IDx ui~) W o Mr_.a (a < r < p)

where a > 2 , and lot V be an h-dimensional open set which contains the set

-u(x) (ul(x), ... , uh(x)) ; x E D) . ially, let Xul, ... , uh) be a function

defined in V and satisfying

(i.6)

inequalities hold:

r

IDr Iu(x))I KO (0 <r < a)

(1.7)

Dx  U() I <BO ra (a <r < p),

where B is a constnt dependid only o KK o K, H0  t l

Remark. The lena is not true if a=O0 or a - 1 .
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Woof. Por a = 2 the proof, in a slightly different form, is given in

[6; pp. 47-50]. The proof for a > 2 is obtained by .ime obvious nodifications

of the proof for a 2.

Corllary . If the u bel2M to CM " ;D) , a > 2, and if F u)

belongs to C(M qa;V) , then F(u(x)) belo to C(MK ";D)

In particular (with M = q!) , an analytic function of an analytic function

is analytic.

We shall also need a more detailed result in the special case h - 1 ,

F(u) = ui :

Lemma 2. Lt F(u) =ui ,  u=u(xl , ... , z n ) and assin that

ID9 ux) Ho  (0 < q < a)

Dq u(x)l H H "q= (a < q< )

where a > 2 . Then

JIP u~x))l I K< (o 0 < q < a)

Dq F€u(x))l < 9_.R"q(q.1)..(q-+2) Mq ( <q<l

where Ko  d Ho

Proof. The proof for a . 2 follos from (16), (18) of [6]. e Pwoof

for a >2 is very similar to the came a - 2.
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Later on we shall deal with polynomials of the form

(1.8) E bi(x), (x e ]5, D open bounded set)
ino

having the property: for all x E D the roots Xl(x), ..., X,(x) of (1.8)

are real and distinct. We shall then need:

.- If a polynomial (1.8) has the above property and if the co-

efficients bi(x) belong to C(Mq-a ; D) for some a > 2 , then the XW

also belongs to C(M q- ; D) .

m

Proof. Consider the polynomials E bi .i where the bi vary in a com-
i =nO

plex neighborhood 1e of the bi(x) , that is, Zibi - bi(x)I <E. Since the

roots kk= (b) are continuous functions of b = (boo ..., b6) , all the

\(b) are distinct if E is sufficiently small. Hence, by a well known theorem,

the X(b) are analytic functions of b e NF . Therefore, by (1.2), they beloaf

to CM ; NF , for any a . Since the bi(x) belong to C(M ; D) , the

assertion of the lemms follows by Corollary 1.

We next need an extension of the Implicit Fimction Theorem. We consider a

system

(1.9) Fi(xl , Xn ; Y9 "' Yh) = 0 (1 < i < h)

and assume that at some point (x ,y )

(1.10) F,(x0  ... xn' A 0) " 0 (1 < i < h)i1.4 n' y1 Yh)-0( i<



F

OYO) #0,

If the Fi  are functions of differentiability class CP(p > 1) , then in

00
some neighborhood N of (x ,yO) the only solution of (1.9) is given by scae

functions

Yi = fi(x) (1 < i < h)

defined in a certain neighborhood D of x0  and fi are of class CP

We shall prove:

Lemma 4. Let the Fi satisfy in addition to the foregoing assumptions, the

inequalities (1 < i < h)

IDrFi(X,y)I < K (0 < r < a + 1)
(1.12)

ifrF (x,y Y ) Kr-a1 tal.(a+1< r <p),

where Dr is r-th partial derivative with respect to (x,y) , and a > 2

Then the solution yi = fi(x) of (1.9) satisfies

Iff,(x)l< Ho (0 < r < a)

(1.13)

lex fi(x) _ Hoir-a (a < r < p)

where H is determined so that (1.13) holds for o_ r < a and H than

depends only on JEW K HO  and on a lower bound on the absolute value of

( lt'"0Ph) / 6(yl' ""Yh) "
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Corollay 2. If the Fi belong to C(M N) then the f belong to
_______ q-a-1 ±

C(Mq a; D)

The analytic case (Mq = q!) is of course well knovn, but the standard

proofs are different fro the present one.

Po. The proof is by induction on r . The assertion (1.13) for

r < a. + 1 is valid by the choice of H0 . We nov assume that (1.1.3) holds

for all 0 < r < q (q < p) and proceed to prove it for q . Differentiating (1.9)

with respect to x we get

a+ f-- = 0 (1 < i < h)

We next apply D - 1  (where D now means total x-differentiation) to both

x x

sides of (1.14) and obtain

h aF i qh q-"l 1  p 4 ~
E x -F + E E p D JF1 Dr .

k-l k kk-l Jul k

Here we used Leibejtz' rule

q qD~(fg E = ()D fD 1

where (q)D fD y means that there are (q) terms of the form Dqi g,

D being any partial derivative.

The functions Yk " fk(x) satisfy (1.13) for all r < q - 1 . Hence,

applying Lam 1 we get

DJ -T¢-), 1 5 oH--a NJ_, (a < J <5 q -1)



provided H is sufficiently large (depending on K. K, H 0)

Substituting this into (1.15) we find that the right side is bounded by

(1.16) KOK " _Mq- 1  + E0-1

where we use the convention:

V=H' if i>o,0 W 1  if i<o.

Now,
q-1 q-1

(1.17) E ( )M Mq_4.a < B1 M_ _
J=l . 3-a

as follows frm calculations similar to [6; p. 49]; B are used to denote

constants depending only on K , K, H0  and on a lower bound on

16(F1' ..." Fh)/6(yl' "'"' Yh) I "

Substituting (1.17) into (1.16) we find that the right side of (1.15) is

bounded by

B2H0 H -a

provided H is also > K • We finally solve the linear system (1.15) for

q
D fk and get

Dxfx). 3 0 q-a

Taking H > B3 the proof of (1.13) for r = q is completed.

Reimark. If some of the Fi are linear functions in the Yk p then the

assertion of Lena 4 remains true assuming that these Fi satisfy (1,12) with a+ 1

replaced by a . Corollary 2 also remains true assuming that these Fi belmg

to C(4q-a ; N).
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a Manifold S is said to belong to class C(M if it can be covered

by a finite nuaber of patches, each having a local representation in terms of a

function, say, f(y) of class C(M • ) A family of manifolds S(x) is said

to belong to class C(M q_) if the f's are of class C(M a) in the

variables (yx) • A family S(x) is said to belong strongly to class C(M qa)

if (i) there exists one-to-one correspondence y(x) -+y(x') between the points

of S(x) and S(x') whenever Ix - xl < 5 (for some 5 > 0) , and (ii) in the

local representation of S(x) , say Yi= g(Yl' ", Yi-l' Yi+l "." Yk' x) , where

y = y(x) , g is of class C(Mqa ) in all the variables. The local representation

of any S(x) is assumed to be valid also for all S(x') with Ix - x'l < 8

g . Let S(x) be a family of n-dimensional manifolds with bounvies

E(x) which are (n - 1) - dimensional manifolds with no botadhy. Assume that

S(x) and E(x) belong strongly to C(M 3 for x e D (D open bounded set),

where a ;0 2 . Let u(x,y) belong to C(M ) for (x,y) in an oen set V

which contains the closure of ((xy) ; y e S(x), x e D) Then the interal

I(x) f u(xy)dS (x)

belongs to C[M ; D) .

Proof. Differentiating I twice we obtain

D I(x) f [Du(xy) + u(x,y)&(x,y)] dS (x)
x SWx y

(1.18) + f u(x,y) r(x,y) d y(x)
Ex)

and

I? ~x) f (D(Th+ uA+ [Du + u& ) dS (x)Dx) 8(W y
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(1.19) + f + uc]r + D(ur)w) dZ(Xx)E(X)

where hDer D u i  r = ri, W=W i if D-D i . & and

x y x in hreA=A

r, W can be represented in terms of the functions of the local representations of

S(x) and Z(x) respectively and of their first derivatives. We then ' .nd that

(1.20) IDrLi < AAr Mr-a+l (0<r <-) for L -= r,W,

where Dr now means any r-th partial derivatives with respect to (x,y) •

In deriving (1.19) we made us of the fact that Z(x) has no boundary.

We can now proceed to differentiate I(x) any number of times. Introducing

the notation

f+ = ,Wo = f'
~r+ =Dfr f 0 =

we have:

Dq Icx) f ¢D + ( )q x)x)

(1.21) + (ff {Z D{[((D + u4)c r]ii u) 1 ,x

E( ) i-l

We shall prove that for any q > 0

(1.22) 10x 1I(x)l < .o A •

In proving it, we shall use the inequalities

(1.23) If u(x,y)I < :KOr 'r_.

which follow from the assumptions of the lemma.

Using Lemma 2 and (1.20), (1.23) we find that

(1.24) yI( (] + %%) ] _<i K ,
2 -h te r-a+1

for all r > 0 , where K iare appropriate constants.



iI

Next, it can be proved by induction on S that if a function £ stisfies,

for all r > 0,

(1.25) l~gI < NOrM _

where V > 0 , then

(1. 26) Ifrgj <N 0iN M r+s-b

provided N is sufficiently large (depending only on A pA of (1.20)).

Applying this fact to g = (Du + r (which satisfies (1.25) Aby (1.20),

(1.24) combined) and to g = ur , we obtain from (1.21) the inequality (1.22)

with appropriate constants H0, H (independent of q).

From the proof of Lma 5 one can easily establish:

1 .. Let S(x,7) , E(x,7) satisfy, for each y (a < < p) ,

the assumptions of Lemma 5 and let S(x,7) , (x,) belong strongl y to C(M )a

(.a >,2)_. P let u(xa,y) belong to C(M j in.aa ofen sit V

taniqg the cloWure bf ((x,:y,7.) ; x e D, < < , y eS7x, y) e Then the

integral b

I(x) - f f u(x,y, y) dS y(x, 7) d7
a S(1, 7)

belongs to C(MIu ; D) .

2. Cauchy Problem for Nonlinear First Order Equations

Consider the differential equation

(2.1) FXl, ..., Xn, Z, P! ... P n) = 0

where F is a d function in all its arguments and p - .z/ . The Caucby

problem consists in finding a unique solution z = (Xl, ..., xn) of (2.1) (which

is an n-dimensional manifold) passing through a given (n-l)-dimensional manifold



0

0...,<-i n)

0

In order to solve the problem, values p0 of pi corresponding to

(x 0 zO) must first be found or be given. These values must necessarily satisfy

the equations

0 0 z 0

F(x0', xn' ' PI, ", P) = 0

(2.3)

n i 'n+lE pi3 = 7 (1 < h < n-i

iwl h h

One is thus led to assume that for the initial manifold (2.2) the folloving

conditions hold: (i) There exists a solution p= P0 of (2A, and (ii)

The n x n matrix
( 1 0xF (Xl ... ,x n) )

(3Fi ' (tr' "'"0 t-l

0

is non-singular on the initial manifold, vhen p = 0

We remark that if (ii) is violated, there may exist more than one solution

or no solution at all to the Cauchy problem.

The solution of (2.1), (2.2) (with pi = p0 for x i - x O, Z = Z0 is

constructed with the aid of an auxiliary system of ordinary differential

equations (the characteristic equations)
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i .F dz nF

(2.4) -h ' s " h- '

dpi _ + F aF (i < i < n

0 0 0
We solve this system with the initial values xi , z Pi

The solution

X i = xi(s,t I, ..., tn_)

(2.5) z = z(s,tl, ..., tn- )

Pi = Pi (s't " tn-)

is C in (s,t1, ..., tn.l) . Using the assumption (ii) one finds that if s

is sufficiently small, then

(2.6) a(xI, ...,) xn)
d(s, tl' "' tn-1 0

Hence, we can solve s,tl, ..., t n 1  in ters of x, ..., xn .

Substituting this into s in (2.5), we obtain a Cr function z = g(xi, ..., xn)

which can be proved to be a solution of the Cauchy problem (the pi are proved

to be &/oxi )

We shall now prove:

Theorem 1. If F belongs to C(Mq.b] (in all its variables) for sow

b > 3 , and if the *i belong to C(M q , then the solution z = z(xl, ...,xn)

belongs to C(M _)'q-b
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For simplicity the domains where the classes C(M qb) are defined has

not been mentioned. The domain where z(x 1 , ... , xn) is of class c(Mq-b

is some neighborhood of (Xl0 ) .

Proof. Set a = b -1 ;then a >2 . We can write the system (2.4) a

the initial conditions (s = 0) in the form

(2.7) dv(spt) -i (v' ... v

(2.8) v (opt) V°(t (i < i < N)

where t =(t, ... , t n), N =2n + 1 , v =x if 1 < i < n p vn+1 = z,

V n+l+i = p if i < i < n 01 are functions of class C(M. &) in

(v1 , ... , Vn) and v0 are functions of class C(M ] in t . Indeed, in view

0of our assumptions, all that remains to show is that the Pi belong to

C (M a) and that follows by Corollary 2 ofj and the remark following the proof

of Lemna .

We next perform the transformation

wi(s, t) = vi(s,t) - vi(0, t)

and obtain

dwi(s,t)(2.9) *1 i(s, t, V31 ..., WN)

(2.10) wi(ot) = 0 (1 < i < N)

where, by Leamma 1 (or its corollary), the are of class C(M in all

the variables.



We shall need the following lemma:

Lama 6. If the belong to C(Mq.,) for some a > 2 , then the

solution wj of (2.9), (2.10) also belongs to C(Mq •)

From the lemma it follows that xi, zpp are of class C(M q&) in

(s,tl, ... , tn-l) . Applying the remark following the proof of Lemma 4 (concerning

Corollary 2) we conclude that z and pi are of class C(Mq a ) in (xl, .**, xn )

(Indeed, we take Fi to be xi - xi(s, t, ... , tW1 ) , i.e., linear in the

x S). since pi= z/ixi, z is then of class C(Mq...+I = C(Mq.b), and the

proof of Theorem 1 is completed.

It remains to prove Lemma 6.

Proof of Lemma 6. We first prove that it is enough to establish the

inequalities

(2.11) IDr Vi(s,t)t < 0  (0 < r < a)

(2.12) If wi(s,t)I HoHr aM (a < r < )

for i = 1, ... N . Indeed we shall prove that if (2.11), (2.12) hold, then

(2.13) ir Vw(S't)I<H0  (0<p+ r<a)

t i p+r-a

for some H depending on HyHH 0 ; NO is chosen so that (2.13) is satisfied.

We proceed to establish (2.14) by induction on p ; assuming it to hold for

all p < q we shall prove it for p = q + 1 . The case p = o follows by (2.11),

(2.12).
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Applying DPr to both sides of (2.9) we obtain

(2.5)DB t vi - e6t *i w.

Using Lema 1, the assertion readily follows if H is appropriately large

(independently of p,r)

We remark, in passing, that the are of class C(M') in s where

M! a 1 , and we can therefore establish (using (2.11), (2.12)) the inequalities

(2.16) II< D Ptw o+rix (a <p +r< )

These stronger inequalities, however, are not needed in proving Theorea 1.

It remains to prove (2.11), (2.12). We first choose H0  so that (2.11) hold

and then proceed to prove (2.12) by induction on r : assuming it to hold for all

r < q- 1 we shall prove it for r = q.

Applying Dq to both sides of (2.9) and integrating with respect to s we

t

get, using (2.10),

5(2.17) D q,,(s, t) .-. * (V4 , t. vr  qX.,,a
0

Ekpanding Dq i by the formula of total differentiation, we see that all

the derivatives t wk appearing in the expansion are of order less than q with

the exception of the terms

Hence, applying Lmia 1, we obtain

N
IDq *I <A Ik=l + A2
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where Ai are used to denote constants depending only on the n on H0

Substituting this inequality into (2.17), taking absolute values on both sides

of the resulting inequality and finally summing over i = 1, ... , N we obtain

s

(2.18) p(s) <A 3 f c(c)dc + A3 s^H 4q'a-1M

0
where

N
(2.19) p(s)= E IDq wk(s,t) .

k=l

Integrating both sides of (2.18) with respect to s and taking s sufficiently

small (2sA 3 < 1) we obtain an estimate for f@(o)da . Substituting back into

(2.18), we conclude that

qp(s) < A4 H0H-e3 -

Hence, if A 8 < H then (2.12) follows for r = q

Remark. Lemma 6 is valid without any restriction on the smallness of a

To prove it one modifies the last argument in the proof and uses Lemia 8 of f 4.

From the proof of Theorem 1 we get:

corollary. If the initial values depend on a Parameter X m are of

class C(Mqb ) (b > 3) in (t.,%) , then the solution z - z-(x, %) . is of Qjees

C(Mq-b+l) in (xk.) (in fact in class C(M qb) in x and C(M b+l) in x)

Indeed, the initial values of p are then of class C(M in (t,X)

(by using Corollary 2 and the remark following the proof of Lenma 4) and we then

can proceed as in the proof of Theorem 1, slightly modifying Lana 6.
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3. Foraulas for FUndaaentel Solutions

The formulas of 3.2, 3.3 are taken from Babitch [1].

3.1. Definitions

Consider the differential operator
U m k A +...ikpuptx ' )um -+.~,, ° k +' ' k

Pu a P(tx, u a , u 8 + 'k . k (t) k t1 -  tn01 kkl+" • =% 1 1 ...n x n

and denote its principal part by P 0 (tx, - , ) . P is said to be hyperbolic

(with respect to the t-direction) if for every real vector t = (rI, ... , n)  0

the algebraic equation Po(txX, ) 0 has a real and distinct roots Xi , for

any value of (t,x) .

We shall consider in this paper only uniformly hyperbolic operators, in the

following sense:

(i) If we denote by Xi(tt,x) the roots of P0 = 0 , then

inf I1%(Mt,x) -×(t,t~x) > 0
( ,t, x)

for all i, J = 1, ... , a., where i j J , t varies on 191 - 1, o <t< o  for

some f > 0 and x varies in the euclidean space Hn

(ii) The coefficients a (t,x) of P and the first derivatives of a0 ,

aI= , a uniformly bounded in the strip: It < , E I .

Under these assumptions and the assumptions that the a. are sufficiently

smooth, the following Cauchy problem has been solved by Petrovaki [16], Lermy [15]

and C rding [8]:
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(3.1) Pu = f(t, x)

h

(3.2) -hI -- (x) (0 <h <m- 1)
at t=O

The degree of smoothness of the solution depends on the degree of smoothness

of the a , f and the % . Petrowski's work contains a gap; Lemy's work

is complete, whereas Girding's work is a slight improvement of Ler&y's results

and mostly a simplification of the methods. He considers also non-smooth data,

assuming that P satisfies only (i), (ii).

A fundamental solution G (0 < j < m - 1) of the Cauchy problem with

pole (t0,x0 ) is a distribution G in x , with t as a parameter, which

satisfies the equation PGj = 0 and the initial conditions

(3.39 a G h0 if h j (0<h<a-1)

at It~ 0= L:1(xx0) if h j

where 5(x) is the Dirac measure with support at the origin.

Babitch [1] considered only the case j = m - 1 . We consider first this

case but i-& uw discuss the general case. We set G = G_ so that

h m-1

(33) G= 0 if O<h< -2, G 0
I- tt
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3.2. "Quasi" Plane-Waves

If the coefficients of P0  are constants, then for any real vector a an*

and for any function f there are m solutions f(7) of Pu - 0, where

7 = vt + x'0 (x.o = E x i a and v is any one of the a real and distinct

roots of P0(v,c) = 0 . The solutions f(7) may be considered as plane-waves.

To construct an analogue of -y in the general case ( 7 may then be viewd

as a "quasi" plane-wave) we solve the problem

(3.4i) P(t, X, , ) = 0

(3.5) 71 -Ox
t=O

Equation (3.4) is of the form (2.1) and the initial conditions analogous to

(2.2) can be given by setting s : t and

(3.6) x- -=O (1 < i n) ,xl = tB = 0

(3.7) Y = - y

where we (scetimes) set x0 a t

Conditions on the at s = 0 (which satisfy the analogue of (2.3)) are

given by

(3.8) Pil = I a- (1 <i <n) , p v

6=0=V.



If xi = Yi on = 0 (1 < i <n) and if t - 0 on s 0 then (3.5)

implies (3.7), (3.8). Conversely, (3.7) and (3.8) imply (3.5). The values

PO " v are calculated from

(3.9) Po(O,y,v,o) = 0

and there are m distinct solutions v = vi(y,.) (1 < i < m) , thus giving rise

to m distinct solutions 7 = ( i ) (x,t)

For later purposes we write down the characteristic system corresponding to

the Cauchy problem (3.4), (3.6)-(3.8):

(3.10)dxi 6(tXPpp)n 6Po(t, x, pOP p)_ dsi = ' p( 3.10) ds aPi do4 J=l ap i

dPi Po(t, x,P 0 ,p P)
(0 < i < n ; p=ds ft i  - -)

Solutions of (3.10) are called bicharacteristics.

3.3. Formal Construction of Fundamental Solutions

For simplicity we take (t 0x ) = (0,0)

We shall use the formula of Gelfand-Shapiro [9] (see also (10; Chapter 1]):

(n-l)

(3.11) 5(x) f f qpn(x) , %(r)= C ' n -l (r) (n odd)

Sc n r - n  
(n even)

where cn  is a constant. It should be stresses that by r we understand the

distribuLion defined by (see 10; P.73])
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(r- ,P) = f r-e (k (r) + c(-r)
0

- 2 0 ) + 2 ( ) + !+ r 2 -2 ( 2 -2 ) ( 0 ) ] d

and by r-ek -1 we understand the distribution defined by

(r'-l,- )() 7 r" -- ((r) - c(-r)
0 3 (3) r2k-1  (2k-1)

-2 z, ,(0) + E: P (o)+...+. (2_l),!()}r

d

h

ordinary function r h

We intend to find a solution G of PG = 0 , satisfying

(3.12) ' =0 (0 < h <a - 2), a " n(x'.)
h t=O

Then, the fundamental solution G would be

(3.-13) G= f G d

We shall find G in the form

00)U U (ai)
(3,114) G ( n 0 Gj G (t,x) = E )kj,(t' x) fk( y, )

and, for simplicity, we write

(3.15) G for G,} , ug for Ukj. J ) far 7
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The series G - Z ukjfk((0)) has to satisfy P - 0 and M has to
k

satisfy (3.12), formally. We do not consider here the question of convergence.

We introduce the operators P by the identity
rn-

m dm-sf
(3.16) P(uf(7)) = Z Ps(U) M-S

P5  are linear differential operators of order s and their coefficients are linear

combinations of products of derivatives Dj7 (j < s + 1) with coefficients which

are coefficients a of P • In particular,

i. Po(u) - Po(t,x, .2, 2 )u _ * naO. k tx .. 7 -A

(3.47) Pl(U) -z l 2A 7j ~
kk

W - k X Z -i a .. (t,x) o ... 7nn

Bher -ko+... +n -. ( in"

Taking fksuch that fk+l(r) - ffk(r)dr we conclude that U 4uk(t,x)fk(7)

is a solution of Pu = 0 if

(38) po(Uo) o, P(uo) + E o(U1) o . PE () + P l(u+l)+ .+O(k )

=0, 3i+... d i0 io je •

We now mke a special choice of , , namely, we take 7 to be one of the

m "quasi" plane-waves of 3.2. Then A - 0 and the first eqution P(Uo) 0

in (3.18) is satisfied, in view of (3.17). Also, o(Uk) - 0 for any k
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If we use (3.10), then the second equation becomes

duo (s t) ,do -' + T7 ij +BA0 0(

and the general equation of (3.18) becomes

d a 1 z3A
(3.19) dt + -- T, e + B)uk E P=

provided we agree to set u 1 =u =...= u+ m 0.

Since we have to deal with m distinct Y - Y( ) , we get the equations

(320) du 1 Ah (h) + B M (
d3t0 2 (T . (h)av(h ) 7i j + dukh = -i ih (uk-i+l, h )

=i i2

where An Bh are obtained from A, B, Pi by taking = 
7 (h)

In order to satisfy (3.12), formally, we first apply 2h/ath to

a
u = E: ukf(Y and obt~ain:

k=O

ahh
(3.21) h Uk('O ) h + Ql(uk_l) + . . . + hi(Uk_i ) + . . . + %h(Uk-h)j fk-h ( )

where u =0 if J > 1 • Here

-ai

nd %i is a polynomial in y and its derivatives up to order h

If we take (

(3.22) rr) -:n )r ( n even)
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then it follows that the initial conditions (3.12) are equivalent to

Fj 0 h O + %ii(uk.4,j) + "'* + 4 h~ k .~ ) -t-O

(3.23) f 1 if h=m-1 and k= 0

otherwise,

where Qhij is hi with 7 = ( j ) •

Since 7( j ) are all distinct, (3.23) defines the ukj uniquely in terms of

the preceding usj , s <k (recall our convention: usj = 0 if s <0 )

We finally write down the sequence fk (as follows by (3.22) and the rule

fk+l = f fk) "

For n odd,

Cn ( -k)(r) if n - m - k > 0

(3.24) fk( r ) = kmnl 1

r 1cr2if n-m-k<Otn (k r+ m - n if nl m-k:

where L_(r) 0 if r <, (r) = if r > 0

For n even
c+m-l n) ... (-n) rn + n+l-k- >O

(3.25) fk(r) = n log 1 if n +l-k- m -0

(_1 )n C n rkft-nl 1+

(n -l) (k +m-n -1: (log +i+..+k +T-n-

if n +l+k-m< 0
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31.4. Statement of the Main Result

The of P with the origin as vertex is the set of all

points (tx) satisfying the system of equations:

(3.26) Ya (t,x) 0 7 (tx) =

for some (,J) , where lal =1, 1 <J<m . Here ri are local coordinates on

the unit sphere.

Let V be an open bounded set of points (tx) , or a closure of such a set,

which does not intersect the characteristic conoid, and let VL be the set

VA (0 < t < , for any > 0. Let VL be the set

[(t,x) 0 o< t< , IxI< P)

for any 0 < p <a • Finally let RR0 be any positive numbers such that R < R0

.nd V6C W for sufficiently sall 6 , say (for simplicity) for C < where

F. appears in 3.1.

As is well known [15] [16] there exists E1 > 0 such that for an <

the following holds: For every f and ph p the solution u of

Pu= f (t,x)

(3.27) h =T(x) (0 < h < m - 1)

4" t=O

in W6 depends on f~ch and the coefficiekts of P only in W.9 that is to

say: if one changee f'qh outside Wft  in any manner and if cem chamns the

0
coefcients ar P se O in such a won that (i), (i) and the bounds c-
concerned are preserved ( depends on these bounds.) then the solution r of the
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S
modified problem (3.27) coincides with the solution u of (3.27) in Wi . In other

words, WE contains the domain of dependence of Wa.

In the sequel we shall assume (see Theorem 2) that the coefficients a of P

are C in WE , and we shall consider the behavior of the fundamental solution
110

6L
G in V C Wr . Hence, if E < I, we may modify the a. outside W without

affecting G in V . We can use mollifiers for this purpose and thus achieve

C coefficients for P also outside W Hence, in provin Theorem 2w

assume that the coefficients of P are Ce in W I for all <

Let (Mq) be a sequence of numbers which satisfy the same properties that

(Mq wag assumed to satisfy, and in addition,

(3.28) 14 -(A') M pMq 14 < 1 for all p, q < 0

where A' is a constant. Fbr instance, if M = (8p)! (8 > 1) , then we can

take I - M•
p p

We can now state the main result of the paper.

Theorem 2. If the coefficients of P belong to C(M14;W~o) for some

a a 9(m, n) , then the fundamental solution G(t, x) belongs to C{MN+d;V C

for so m sufficiently small, where p and d = d(u,,n) devend only on x,n ;

p(m. n) ? d(, n) , and where

A 14 M
(3.29) M - for b>0

A
and M =1M if M =p'-- p P -p
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Corollary 1. M = q! is the analytic case and our result for this came
q

coincides with that of Babitch (1].

Corollary 2. If the coefficients of P belong to C((bq): ;%W) then G

belongs to C([(38 - l)q]( ; VI] , for any > 1.

The proof of Theorem 2 is given in J 5. An auxiliary result on interior

estimates for hyperbolic equations, which is of intrinsic interest, is proved

in f4.

4. A Theorem on Interior Estimates

In this section we prove that for the Cauchy problem

(1.1) Pu = f

--- ut= 0 (0< h< m- 1)

the following is true: If the coefficients of P belong to C(M qb; 1 ) for
0

sae a> 0 , RO > 0 , then the succesive derivatives of u in VP can be

estimated in terms of the successive derivaeives of f in WE provided the

latters are bounded by Aq  
. Here RO  is sufficiently laqge, depending an

R, and P . The result is formulated in Theorem 9 below, and this theorem will

be needed in 15, for the proof of Theorem 2.

Theorem 3 is analogous to results derived by the author in [1] (5] for

elliptic and parabolic equations. It would be strictly analogous if R were

to be RO -E for any e. > 0, but such an assertion cannot be expected to

hold for byperbolic equations. The proof of Yheorm 3 is based on different tools

than those used in [i] [5 although a part of the technique is similar to [141

[5].
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To formulate the theorem we introduce the norm
1

IIv(t,.) I I =-(f I(tx)12  dx)2

We assume that P is a uniformly hyperbolic operator with Cr coefficients in
0 and that the coefficients belong to C(M.; O ,vhere b > 0 • We further

assume tha R _, can be found such that R < R < 2 <B 0  and (a) the =Min

of dependence of Wa is contained in IRI, and (b) the dcain of dependence of

VP - VP is contained in VP - WO
oo %,o0 Fo2

We can now state:

2M .M .I* Let the foreoina assumptions be satisfied and let u be a

lution of (4.i), (4.2) in V . If f satisfies, for 0 <t <a,

(4.3) JID q f (t,. 1o 0< Eo0.q Mq-b (o<q<p)

then u "satisfies, for 0 < t < a ,

vyere KopK daedol E0,I aad on PRR(AI%.R

Proof'. Note, first, that all the derivatives of u in (k.4) exist by

[8] [15 ] [16]. We shall prove (-.3) for any given q, 0 < q <p (without

using induction on q).



-33-

We modify f into a function Y defined as follows:

f (t'Ox) inVP

(4-5) ?'t, x) =q4(x) f(tx) in VP-VP
12 1,

0 in 2

,here , (x) = ( Ix I) , and

(4.6) (P( (R2 -Rl)r + Rl) = (r2)

The function t(r) is required to satisfy the coaditions:

YO)= , '..t(k)(o)=o (1<1E< q), (J)()=0 (0<jq)

Then, the ame conditions are satisfied by t(r ) , and by (4.5) (4.6) it follows

that f* is of differentiability class Cq  in V •

We want to find t(r) as a polyno ial of degree 2q + 2

Then,

t (r) = rq(l - r)q(Or + 7)

for some % 7 Integrating and using the conditions t(0) = 1 , t(1) = 0 ,

we get
~() r r

r a q+l(l- _5)q do + 7
0 0

where P., satisfy

03(q+2, q+1) + B(q+1, q+1) + -0

Here

B(x,k) = + n ... x + - (0)

is the Beta function.



If we take =1 then

1 1 1
- (q + ., q + 1)as'

Let q(r) be the polyncaial
r q+

n(r) fsq( 1+.) + +1
0

Then it is clear that

I1k C(r') 1~, :51 (2').

IV expanding Dk t(r2) and ccapering each term in the expansion with that of

1r C(r2) we find that

k+1 kThe right side of (4.7) is easily seen to be bounded by B q where B,

are used in this section to denote appropriate constants depending only on

P,ERo,1 ,L .

Using (4.6) we get

Hence.
k

(9) IIk f(t,.) IL <E M -b + E () I - f(t.)

At this point we introduce a new sequence (Ok-t defined by

k
(a.nd ) c t K k . o < < )

an notice that Wk _ Mk . Also, by (1..) and (1.1),



that is

Using (4.11), we obtain from (4.9)

II~k f(t,)II <E Ek mk- + LEF k

where E-max(E,2B2 B 3) Hence,

where NO m = l+B
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Let u be the solution in I ofo

j_ =0 (0<J<m-l)
t=O

By the choice of R, R2  we conclude:
IV 2V

(4..1) = 0 in P- IP , .u in

Hence, if we prove by induction on h that

( 16 1d,4 - 1 -(t,. )11 <5 rjK2 h -b_ (0 <_ h < q)

then, taking h = q we obtain (4.4) with any K > eK2 • and K2  will be proved

to depend on So P and on PR,R,,R 2

Before starting with the proof of (4.16), we need the following fact which we

state as a lemna.

III&hII <N li -

If[ [ +I Mk~b ,

for 0 < k < q , then

IIo(fv)I NS B62oi e . (o N < k < q)

provided N > 2B5 B6 is independent or N0 ,0 1
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Proof. We first observe that if 0 < J< k < q,

3 k

that is,

(4.17) CJ) Mk-j-b j-b tMk-b

where we made use of (1.1).

Using (4.17) we get

IJnk(gji)II k (k) I Dk'h r: IIDjgII 5Bd6 Nk 1kb
J-0

where we made use of the fact that N> 2B3.

In proving (4.16) we shall make use of the eneM inequality [8 ; Theorem 7.1]:

(4.18) lJDm : B,. )1 7  0.1 ' v(O, L. +

+ B7 ft I1Pv(,') d11, ,
0

where B7  depends only on P. We shall apply it to v - Du. Hence, we first

have to estimate the left side of (4.16) for t = 0.

We shall prove, by induction on , that

(4.19) KK3,K- 0r )K <K < q).110tm 1x 34u(0,bIL03h4 N-)

Here K 3 K4 depend on the same quantities as lKJK 2 -
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For h = -1 the left side of (4.19) is zero. We now assume that (4.19)

holds for all h < k and proceed to prove it for h - k.

Al:lying Dk Dx (k+r < q) to both sides of (4.13) and taking t - 0 we gut

k.+ r- k r '-,0 1~. +k rf(4.20) Dt I1 u= Dt D aCfT.u). ,t D f I, + I

a a
whereDa = Dto ...D1  and 0 < m.n

I111 can be estimated by using the inductive assumption, making use of the

assumption that a' WCC (and recalling that u - 0 in WC' - IeaeC(q-b $ R (an a H,0 0

by (4.15)), and employing Lemma 7. 111211 was already estimated in (4.12).

Combining these estimates we get

t x~o ~ 8 K3  4 -

provided K4  is sufficiently large, depending only on E0 , E, P, R, 0 , R1 , R2

Taking K4 ?_ B8 the proof of (4.19), by induction, is completed.

We can now proceed to establish (4.16).

Proof of (4.16). We assume (4.16) to hold for all h < k and shall prove

it for h = k. The case h - 0 follows from the energy inequality (4.18) applied

to V U.

Applying Dk to both sides of (4.13) we get

k k k- k .a.sk-s -(4.21) P(Du) =- Df f . ()) - a( J 1 +J 2 "

J2 consists of two sums. The first sum, J21 , contains all the terms

involving derivatives of u of order k + m - 1 and its norm is bounded by



V

B2- I1 +k-1 u(t, )Go=

The other sumi J2 - J21 can be estimated uking the inductive assuption and

Lemma 7. We obtain

1132 - 32111 < B10 K] r2- W-b'

Finally, IIJ111 is estimated by (4.12).

Taking K 2 > , K> go we get:

(4.22) IIP(IJ "t)(t,')II Go B9  IdL M Ui 0'B(t,.) ll +BJ l -] [.*b.

We now apply (4.18) with v - 'U" . Using (4.19), (4.22) we obtain, if

K 2 > K4and _> 3

(4.23) hip N -P -~lU(t, 110I < B1 K f W+u(. '12 f
lala1iK1 0 iluu*)Ig

In this inequality --i u is one specific (k-l)-th derivative. (Strictly

speaking, we only obtain (4.23) with

ia I m-1
on the left, but then (4.23) follows very easily.)

We now need:

Leu 8. Let y(r), Q('r) be continuous non-negative functions for r > 0

and suppose that

H( f y(I)d, > 0.
0

Then

f y(t)dI< eH .
0 eH Q(t) di
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Applying the lena to (4.23) and taking K2  sufficiently large (depending on

B12 and a (t < a)), the proof is completed.

Coro = 1. Using Sobolev's lemma we conclude from (4.4) that for all

(t, x) in VR.

(4.29) -v u(t,x) K q Mq-b (0 < q < p)

where KO KO B and vo 13 1

Corollary 2. From (4.24) it follows that if f belongs to C(Mq-b;I )

then u belongs to C[M •

Corollary . If f - f(t,x,%) depends on a parameter X and it satisfies

11 MR ft ",P x)1 lil :5 o Zq= bo (0< q < p) .

00where D memonsny q-th partial derivatives with respect to (t.,x,%) ,ad

O<t<a, X A , then

lD010 - u(t,., %)IIR <K (o < q < p)

The proof is similar to that of Theorem 3. Indeed, f is defined in the same

way as before. In (4.19) we replace Df by if which means: any r-th partial

derivative with respect to (xX) , and then proceed to prove it by induction on h

Finally, in proving (4.16) we apply 0 to both sides of (4.13).

Remark. Given any R < R0  we can find Rl,3 2  as in the assumptions of

Theorem 3, provided a is sufficiently small. This fact will be used in J5.
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4. Proof of the Theorem 2.

The proof is divided Into seven steps. In 4.1 - 4.4 we only use the restriction

f(m,n) > m + 4.

4.1. Estimtes for YO)

Consider the Cauchy problem (3.4),(3.6)-(3.8) (with vu vj) for y - y( j ) .

By LMnu 3 and (1.2), the initial values po M v which are determined as solutions

of the polynomial equation (3.9), whose coefficients are of class C(M I in (y,a),

are of class C(M -a in (y,o).

We can now apply Theorem 1 and its corollary (as a > 3 ) and conclude that

(j) . () (t,x) is of class C M ) in (t,x,a). TAs',
Cr q-a+l

(5 .1) ID. y(j ) (t;x)I:5 Ao Ar a+l (0 < r <)

where D. is used in this section to denote any partial derivative with respect

to (t,x,a).

4.2. Estimates for Ukh

We set b - a - 3.

The coefficient

(5.2) ) ~A h (h)

i

in (3.20) is of class C(Mq .b) (as follows by (5.1), using rAm 1). Hence,

(3) ID h (t,x) <AA Mb (0<r <

where A1 , A2 are constants.
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We next derive estimates for the coefficients of the operators PI ' . j

appearing in (3.20) and (3.23), respectively.

By the paragraph containing (3.16) and the fact that YO) belongs to C(K I

(and hence DP+ 1 belongs to C(M )) it follows, using Laea 1, that the
q-+s42

coefficients of Psi belong to C{M +,+2) provided a-(s + 2) > 2 • A closer

look at Psa shows that if

wher P(v) JaF 8 P (t, x) 1P v

where a 1 ,..,a) lal =L , D. D D then

(5.4) P, sc belongs to C{M a+s-lal+ 2) P

provided a-(s-jaI + 2) > 2. Here it is where our assumption a > m + 4 enters, as

1 <s <iM.

We turn to %ij" By the sentence following (3.21) it follows, upon using Lena 1,

that ai
%ij = qhij~t x  Ch

and

(5.5) qhij belongs to C(Mq-a4m

We set

c - min (a-3,a-m)

so that b > c > 2, and express (5.4), (5.5) in more detail, niely,

(5.6) I* PsI < A3  r (0 < r < )

(5.7) I < %1 _AS Mr (0 < r <m )
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where A3 , A4  are constants.

We shall now establish the desired inequalities for ukh(tx) (recall (3.15))

in five steps. Throughout the rest of this section, we denote by an yz r-th

partial derivative with respect to the variables (x, a). If has the same meaning

with respect to the variables (t,x).

The first step consists in proving that

(5.8) ID If Uoh (ox) <H 1 H2q+r-b Mq4r-b

for all 1 <h <m , and all qr such that q + r >b. Here HI is chosen in such

a way that

i~ U h(°0x) )- if q + r < b.

The proof of (5.8) is by induction on q. To prove it for q - 0 we use

equations (2.23) for k = 0, namely,

m () h f0 if 0 <h <m - 2

= o 0 if h - m -I

The uoj can be uniquely solved by using Crmer's rule, as the coefficients

matrix is non-singular. Since by Lema. 1 the product of functions in C(N.b) is

again in C(Mq-b) and since 1/f belongs to C(Mq-b) if f 0 0 and f belongs

to C(.b) , we conclude that the uo3  belong to CKq7b) ( a )  at

belongs C(Kb) , by (5.1)). This establishes (5.8) for q - 0.

We next assume that (5.8) holds for all q < p and proceed to establish it

for q - p. We shall make use of the differential equation (3.20) for k - 0, namely,

(5.9) duoh
u+ Ch uo - 0



|I. . I,-

Applying D-l o to both sides of (5.9) and then taking t - we obtain

t 0~9
(at points (0,x,a))

Dr Drl (r) ~t o oh= oh0 h

The right side is bounded by

r ~-1L ( P-i) (r) A s+A-b p-l+r-s- M

where A, are constants independent of r,p and where we use the notation:ie

e=H if e00

1 if e<0 .

Taking H2 > 2A2  and using (i.i) we get

JDp DF u h(O,x)I A6 H, H p-lr-b
So o 2 p-l+r-b

Taking H2 >A 6 , the proof of (5.8) for q - p follows. (In fact, we have

proved (5.8) with q+r-b replaced by q+r-b-. but this will not be ued in the

sequel, as it does not yield any improvement for the estimates of the uk,(tx).)

The second step consists in proving that

(5.10) ID q) ukh (0,x) I H Ha+rb
t 0 3 4 k+q+r-c

for all 1 <h < m , and all q,r,k such that 2k+ q +.r > b. K3  isochosen in such

a way that

IDq  u (O,x) 1 < H3  if 2k + q + r < b.

From the proof given below it fol.ows that Mk+q+r-c can be replaced in (5.10) by
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k+q+r-c-i ' but this will not be used in the sequel.

Since a <b , (5.10) for k - 0 follows from (5.8) if we take H3 >H,

H4 _ H2 . We now proceed by induction on k: We assume that (5.10) holds for all

h ith p <k and proceed to prove it for p - k. H3  is fixed and H4  is

still to be determined (independently of kq,r).

We employ another induction on q. We then first have to establish (5.10)

for q - 0. We make use of (3.23) and we write these equations in the form

(5-11) 07 ( ) )h .-

J-1 n h

We first need to estimate 0 k at points (O,x,c). This expression consists

of a finite sum (the number of terms is bounded independently of k,r), the general

term of which is

Oj qh4 o, Dj uk~i s ( < i < hk).

Using (5-7) and the inductive assumptions we get the bound

A7  r() -0 A 2(k-i)+i+s-b M

Taking H4 > 2A4 we thus ebUin

r evk+r-b-l
(5.12) ID0  I <A A. H 3 H -4  Nk+rc 

We ae now ready to esablish (5.10) for 9- 0 by induotion on r. For 4

r 0w esimplysolve (5.3) and use (5.12) with r - 0 , t kin H 4 > A8  Assuming

the validity of (5.10) for DO Ukr with s < r ,we ahsprove it for a r. we

apply Dr to both sides of (5.11) and obtain
0
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Using the inductive assumption and the inequalities (5.1) which hold not only

for the 7 ( j ) out also for any pover ( 7 (j) )h (by Tama 1) with different AoA,

we find that the first sum on the rI~it side of (5.13) is bounded by

A H H 2k+r' r

9 34 Mk+

The second term is estimated by (5.12). Hence, taking H4 > A8 + A9 , the

proof of (5.10) for q - 0 is completed.

We now proceed by induction on q. Assuming (5.10) to hold for all q < p ,

we shall establish it for q = p. We shall make use of the differential equations

(3.20) which we write in the abbreviated form

(5.14) duk

We first estimate D]9 "I YO at points (O,xr). It suffices to estimate
t o kh

the general term

j = Dt"-1 o (P IP - 1h (2 < i < m. jl <_ k > 1).-

Using the inductive assumptions and (5.6) we gt

IJ p-l+r)I D . i I ID0 D:1hI _< ia h II P I EP -i+l.,h I

<A10 H3 H4  
'  '+pl+rb M (-l+r( ' p-+r-s-a+- I11+2 Mk-i+1+IoI-c

<Al H3 H42 + 'p l+r 'b Y-k+r-c .

Hence,
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(5-15) I D I .okh1  H2 H3 H 4 +pl 'b 1  --

We now proceed to estimate D FApplying D~- Fto both idest o wl(ox). A. 1 D0
of (5.14) and taking t = 0 , we obtain

DP]Fu" , r -)r D--1J e-
t o 1~k 8 t 0 ( -)(J J Ch)(Dt D 0ukh)

t o kh

The first sum is estimated by using (5.3) and the inductive asumptions, and

we obtain the bound

A13 H 3 H 4 '+r'b Mi+P-+r-c

Combining this with the inequality (5.15) and taking H 4 > A12 + A13 , the proof

of (5.10) is completed.

The S step consists in proving that, for 1 <h < m,

(5.16) ID o e .(t,x)I <H 5 H6  b q +r- c (q + r > b)

(note that the argument is (t,x) and not (O,x) as in the first two steps).

H5  is chosen in such a way that

ID q Uoh(tx) I <H 5  if q + r < b.

The proof is by induction on q. To prove it for q 0 ve eWloy induction

on r. Assuming (5.16) with q = 0 to hold for all D1  I < r ,w proceed to
0

prove it for J - r.

Applying DF to both sides of (5.9) we get
0
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(5.17) d (Dru~) + Ch(Dr U ).,

and

r-0(5.18) IFo _I E; (r)1I Ds _~ e'C --
O=O o- Uoh 0 :~~ 0 h A1K4 I5 H6r'' M.c

as follows by using (5.3) and the inductive assumption.

Integrating (5.17) with respect to t and using (5.8) with q - 0 and (5.18),

we get

(5.19) If Oh (t, x) H, H r _ + A14rH56 Mr-c +! A 15- uoh(r)I .
0

Integrating both sides of (5.19) with respect to t , we can then eliminate the

integral on the right side of (5.19) and thus obtain (5.16) with q - 0, provided we

take H6 > H2 , H6 > A161 for appropriate A6 •

We proceed to prove that if (5.16) holds..for all 4.< p 'thei1t holds for. q =p

Applying D1 D1 to both sides of (5.9) and using (5.3) and the inductive assuqptiont 0

(in a similar way to the calculations in step 1), the desired inequality easily follows

if H6 > A 17  for appropriate A7 '

Thefourth Otel consists in proving that, for 1 < h < m,

(5.20) IDt Do ukh(tx) <H R 2k8q+r- b (+rc:q + r > b)

where H7  is chosen in such a way that

IDx) q H if 2k+ q +r <b.t o 7h(t X) H7

The proof is by induction on k. The an k - 0 is St 3. In order to establish
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the indu tive passage from k-i to k, we enploy another induction on q. Thus, W

first have to prove the case q - 0, that is,

(5.21) le~ u~t,x)j H H.1 H8 +r-b Mk (2k + r > b).

To prove (5.21) we employ induction on r. The case r - 0 will not be

described here since it follows by a pert of the argumnt given below for the

inductive passage from r-l to r.

In order to perform this passage, we apply If to both sides of (3.20) and

obtain

m

The first sum is estimated by

(5.23) A18 H7 H~a i k~-b '2k+r-c

where use is being made of (5.3) and the inductive assumption.

In the second sum, each term is a sum of terms of the form

(5.24&) Dop aP uk-i+l,h)*

Using (5.6) and the inductive assumption get (by ob.~culation s'-Iui to step 2)

a bound (5.23) but with a different A8

Hance,

We now integrate (5.22) with respect to t and proceed by an arguumnt of step 3.
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The proof of (5.21) is thus established.

Having proved (5.20) for q - 0 to proceed to establish the inductive paseage

0

from q-1 '.to q. This is done simply by applying Dt 'l DF to both sides of (5.14).

Since a similar argument appears in step 2, we omit further details.

jR k. The inequalities

(5.26) IDq Dr uk(t,x)l < H? H 8 a +rb ++r-c

may seem more natural than (5.20). If they are true then the next step is super-

fluous and Theorem 2 can also be improved by having

M MM< + -- •

However, it seems to us that (5.26) is not true. The difficulty in trying to

establish it is that the sum of the orders of differentiation and the subindices

of the u's of (5.24) is k + r + 1 , if all = i, and not k + r. Therefore, in

order to carry out the inductive passaW from k-1 to k, more weight should be

given to the index k. We are thus led to establishing (5.20) with 1 k +q+r-c for

some X > 1. The previous proof works well only if X> 2.

The fifth step (and the final one) consists in combining the results of the

second and fourth steps in order to improve the results of the fourth step.

By Taylor's formula we have:

I itv
DC1 D)F X,( ) X t V D~c DF uk(O,x) +

11-0

where

tN

Nor so 0 i ,(t<x)t

for some t, 0 <t <t.



Using (5J.O), (5.20) we get

q 1 ~ N-1 t V H2k+q+r+v M~~~

(5.27) t N H2k+q+r+N
+ Nr H7 M8

1 2k+q+r+N-c

if MH = q! then the last term on the right side of (5.27) tends to zero

as N -+co , provided t~ < and £ is sufficiently small (i.e., 3 Zr H8 < 1).

On the other hand, the sum on the right side of (5.27) is bounded, independently of

v , by

A 20 3 H2k+q+r (k +q+ r -c)!

provided is sufficiently small (say 3 F_ H4 <i)

Introducing the notation

(5.28) M4  if M q aq

Mk)S k+s otherwise

we conclude from (5.27) and from step 4~, that

(5.29) jD uNtx)I < H0 Hk+r M ~~-

for some constants HO H. This is the final form of our estimates for the u~kh.

Note that (t,x) varies in WE and or varies on Ia] = 1.

4.3. Estimates for f(O

F~rom (3-24i),(3-25) we see tha.t fk(x) , for k > n - m + 2 is of differ-

entiability class C)k-n~m-2 and we can write
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(5.30) fk(r)

in the following sense: Bach derivative D (q < k-n4m-2) of any side of (5.30)
r

is bounded by a constant (independent of qk) times the derivative Drq of the

other side.

From the proof of Lemma 2 it is seen (using (5.30 that the lemma remains true

if F(u) - ui  is replaced by

F(u) - i: i+n-m+l(u)

Making use of (5.1) we thus get

(5.31)Ao 
i  l -Aq-a-1 qq-l) ... (,-12)(731 I k( l ,_< 0 l. (k-n u-l). "q-i-&+2

where i =k- n +m- 1 and a +i <q<k- n +m- 2 u i - 1, and

(5.32) IDi fk(7i- I < K (kfn m-l) if 0 < q < a + 1.

Ki are constant independent of q, k.

Taking A > Ao Ko  we conclude, from (5.31), that

(5.33) I . (Y I 0) ) jAA-r q-& a+1 < q < k-m-2).

The inequalities (5.32),(5.33) are true also for all q >0 at points (t,x,g)

where y (t,x) p O. Indeed, for n odd, fk(r) - 0 if k <n-a , and r 0

whereas fk(r) -. ,n rk4U l if k > n-m , where Ckn is conatt, positive for

r > 0 and zero for r < 0. Hence we only have to consider the case k > n-v, 7()(tx)>0

and we then apply Lemma 2 and derive (5.32), (5.33) for all q > 0.

Fbr n even proof of (5.32), (5.33) for all q > 0 (at points where 7(0) 0 0
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is somevbat different. lit I1 (t,x) I > r0  for soe ro > 0. We then observe

that (k+m-n-l) f k(r) belongs to C((qw-Q4), uniformly in k, on any set

(r; < Irl < r 1). Combining this remrk with (5.1) and using Luamm 1, the proof

of (5.32), (5-.33) follows.

4.4. Estimates for

Lot q <k - n + m + 1. Then, using (5.29) MA (5.32),(5.33) we Pt

ID~ (t'x)fk(V(h)] l -< .K 3 (q) . h r A0  q-r Nk , _c

(5.34) K H k+q
q-r-&+l <- (k-n"m-l1'.  k,k q-c

This inequality remains true for all q > 0 at points (t,x,a) where

,(h) (t,x) 0 0 , and then K1. depends on r where ro Is any constant < 1v(h)(tX)l.

Hence, for such points (t,x,o),

(5.35) IDq ( ulb(tlx)fk(v (h))]I5 KH+
- (1-n . NN,N+ -c

45. Estimates for the 'reminder' G (h)h uk(tx)fk(y()

We set

(5 .36) Up. (tx). ukj(tx)fk(v("))

(5.37) R (tx) h(tlx) - U,(t,x).

We continue to use the abbreviations (3.15). RPh may be considered as the "remainder"



of the (generally) divergent series 0 uk (7). We shall estimte in this

subsection DI R for q p- n +m- 1- v where v [+2 ]. Setting
Ph 2~-~ - -

P = P(t,x, , ) it is easily seen that R satisfies formally, the equation
x ph

(5.38) P h - 'Lphp

where Lph P (uP,h)f p ( h ) ) + "[Ph(up-l,h) + Pm-l,h(up,h)] f.-1 (7 (h))

+ --- + [ph(um+2) + Pm-l,h(UP-m+3,h) + 0.. + P2(uph )]If.m+2 ( 7 (h)),

and the initial conditions

(5.39) C) R (o < j < m - 1).

(5.38) is an hyperbolic equation and the nonhomogeneous part is of differen-

tiability class Cp -n  in WR (if m - 1 , Lph * 0). By Girding [8] and the fact
0

that the domain of dependence of WR  is contained in WRo , it follows Rh exists
n

in W1 and is of class C+ n . Using the definitions (5.36),(5.37) end (3.15) ,

it follows that G is the fundamental solution. Since p can be made arbitrarily

large, G is differentiable up to any order s at points (t,x) where

(5.410) Oph(t,x) R l.,J f [  UphO(t,z)]da

is differentiable up to the order s , for sosi p > s + n - m.

We proceed to estimate D .Rph in two steps.

The first step consists in deriving estiates for Lph.

In order to find a bound on Dq Lph , it suffices to find a bound on



(5.1)q (P (~ ( (h))(0 i, <m-2
(5.41) D* m-J~h Ap-i+joh) p-iy(0<i j m 2

We first estimate

It suffices to treat the general term of (5.42):

I IF,(Pm-J,C%,h D'up-i+j,h) a )

Using (5.6),(5.29) we get, after some (by now) standard calculation,

(5.43) 111 < B1 B pr M2 p,p+r-e

wrhere B i are used to denote appropriate constants, and where tho symbol e ill be

used in what follows to denote various constants, all of which are of the form

e -a -el , el depending only on m,n.

The (p(m,n) appearing in the statement of Theorem 2 is taken to be larger than

the maximum of the various el(m,n), so that e > 0.

An inequality similar to (5.43) holds also for (5.42). Using this and (5.32),

(5.33) we find that each term of (5.41) is bounded by

B 3 B4 Pq P

provided q :5p- i- n + m-2. Since i < m-2 we conclude that
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(5.44) ID, Lp,(tX)I < B B6 for (t,x) in W

for all 0 < q<p - n.

Using (3.28) we get

(5.45) ID ML jtx)I<B7B8P+ for (t,x) jn-c t )I: P! q in "

The second step consists of applying Corollaries 1,3 of Theorem 3 to the solution

of the system (5.38),(5.39) with Lph replaced by

Lph/ (BP

Recalling the remark at the end of §4 we conclude that if E is sufficiently

small, depending only on R, R and P, then
0

M M
(5.46 ) IDB+lv 9ph(t ) 1 0 +"  in W

for O< q<p- n.

4.6. Division into Cases: The First Case

We are now going to divide the points (a,h) into two classes, and complete

the .proof of the theorem by treating each class separately and then combining the

two results.

For every point (t0,xo) in V , the system of equations (3.26) is not satisfied.

Hence, for any given a and h (Icl = 1 and 1 < h < m), either
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y h (t, x) O0 or
h ht )to o

h' (to x o) - 0 but grad* y.(t ,x) # 0 (*= (**n- ))

It is clear that, for any h , we can divide the unit sphere lol - 1 into a

finite number of smooth regions E- such that for all a in any E either

Mi 7(h (t°,k° ) 4 0

or, for all a' in that EIh

( h h

Both cases may occur simultaneously.

It is clearly enough to derive the estimates on G for (t,x) in a small

neighborhood V of (t°,x0 ), V 0 V , since then we can apply the Heine-orel

principle and complete the proof of the theorem.

We can take V0  and the Z h in such a way that if (ii) holds, but (i) does

not hold, then

(5.47) for scme q > 0, 'h (t,x) = 7 (171 < a- C Ep w (t,x)e v0 )

can be uniquely solved in terms of one of the li and

grand y7(h) (t,X) 4 0.

We shall now estimate derivatives of 0hq m Rph + Uhq for a E 4h , in case (i)

By (5.35),(5.46) we get, for q = p - 2n - 2,

, M

q 2) [-q.r q!



for some a - a(mn)

4.7. The Second Cases Completion of the Proof

We next consider the case (ii) and estimate derivatives of

(5.49) Gh,(t,x); I f Gha(tx)dS .

Since Ghcr = Rphoy + Uph. and the derivatives of R PhB have already

been estimated in 4.5 (see (5.46)), it remains to estimate derivatives of

(5 .50) UPh (tx) = f Uph (tx)dS
cc

We may clearly assume that (i) is not satisfied; hence (5.47) holds. Let

a be the unique c F E for which ,,(h)(t ,xO) 0 Because of (5.47), there

exists no > 0 such that

(5.51) if I (- °I > o, ,h (t'X) e V. then 7(t ,X) $0,

provided the diameter of V0  is sufficiently small, which we may assume.

We now split the integral (5.50) into two integrals:

(5.52) U f = f + f + J +

cr E h EE' C ag "

To define l consider the family of surfaces

(5.53) Y0h(tix) =

for -q < y < n . Because of (5.17) this is a family of (n - 2) - dimensional

surfaces in the local parmeters *i """ *n1- , the parameters of the faily

are (t,x,y) . Denote this family by T(t,x,y) • Pbr each 7',y" in the interval



-59-

- <7 there is a one-to-one correspondence e between the pointsN N

= *(t',x',7') on T(t',x',7') and , = *(t",x",7 ") on T(t",x",y") provided

(t',x') and (t",x") belong to V0 , and N is sufficiently large. We determine

on T(t,x,7) a set n(t,x,y)' in the following way:

A(t,xeO) is the intersection of T(i,xO) with an (n - 1) - dimensional

sphere in the * - space. If the radius of the sphere is taken to be sufficiently

small, then t(l,3,o) is a manifold. n(t,x,7) is defined to be the set corresponding

to 0(t,4O) by the mapping t . Let T0 (t,x,-y) be the interior of

j(t,x,7) in T(t,x,7 ) . Then it is clear that if the diameter of V0

is sufficiently small and if N is sufficiently large, then v(txY) and

T0(t,x,7) belong strongly to C[M T-81  (see ji). Also, n(t,x,7) has no boundary.

Note now that if we decrease V0 , and N remain unchanged but 0 in

(5.51) can be decreased. Hence, without loss of generality we may assume that the

family (To(t,x,y) ; - <7 < ] contains the (n - 1) - dimensional set in the

- space which corresponds to the set IT - cr0 i < 0 "

We define

E' = = To(t, X,7) ; - <7 < •

Then, by (5.51), Ii h(t,x) r >r o > 0 in E -

Hence, in E" (5.35) is valid, and using (3.28) we obtain

* , )q-2
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Applying Lemma 5' , we obtain, for the particular choice q a p - n ,

M
(5.5) . 1D j" (t,px)l - 15 16 p p

We turn to J' and introduce on E the form (see [10; pp. 272-3])
p

v(h)
d- dr do where dO=ds/ I--I ;

dS is the element of area on the manifold T0(t,x, y) and 6/ v is the normal

derivative to T0(t,x,y) We obtain

(5.55) it ¢t,x) k f f Tt,x, 7)d

Denoting the inner integral by *kh(t,x,7) , we claim that for any q >0 ,

(5. ) I + kht x  )I_ 17¢ 18) Mk,k-e q

where D is any q-th partial derivative with respect to (t,x,y) •

Indeed, this follows by employing Lemma 5 while making use of the estimates

(5.29), (5.1).

It is now easy to complete the derivation of the estimates for J' . In fact,
p

SNp
D qj (t,x) = kfk (-) Dq  k(tx, )d7. a

Pkn0 knO Jk

Consider first the case where n is odd. If k K n - m then, by (3.24),

(5.57) Jk (t,x) = cn D)7n-m k Dq Ok(tX) 7 0
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and if k > n -m then

(5.58) 19~~/ ( . _ sup Dq t x, 1

Combining both cases for k , and using (5.56), we get

M(5.59) 1IDq i I(t, x)l B,,o(Bz) P"' PE 'q.

p P.,~2 )~

For n even, if n +1- r-m< 0 then (see (3.25)) we obtain an estimate

similar to (5.58). If n + 1 - k - m > 0 then we obtain a result similar to (5.57);

this follows by using the definition of the diEtribution r-h  ( h > 0) and

Taylor' s formula.

Combining the estimates (5.59), (5.54) and using (5.52) we get, for

q = p - 2n -2 , M

(5.60) ID ,22(B23 )p  e M- p.4 - P

Combining this inequality with (5.46) we obtain for Gh,L the inequality

(5.48) with different B's and x

Since in the first case we have, by (5.48) (see the definition (5.49),

(56)M M C 14aM C
(5.61) Dq G, (tx) I < B2 4 (B1 2) M -q. q!

we find that (5.61) holds in each of the cases.

Summing over h,g we obtain the same inequality (with different B24 ) for

G(t,x) . This completes the proof of the theorem.

6. Concluding Remarks

6.1. Other Fundamental Solutions

Theorem 2 remains true also for the other fundamental solutions G (tx)

defined by the initial conditions (3.3'), with tO = O, x0 = 0 . The only
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difference is in the definition of the ki. fk1 is defined a, but instead

of (3.22) we now take

(6.1) 
n(r) - 8(n-l)(r)n

Scnr- ( n even)

Formulas (3.24), (3.25) have to be modified accordingly.

Obviously, all the results remain true for the fundamental solutions

G (tx;tO xO) with pole at (tOx O ) .

6.2. Smoothness of Solutions: Huygen's Principle

Let u be a solution of the Cauchy problem

Pu =0

t=O

For any point (t*,x*) where: 0 < t <I. (the same . which appears in the

statement of Theorem 2), denote by C(t*,x*) the intersection of t = 0 with the

characteristic conoid with center (t*,x*) . Let C* be an open neighborhood of

C(t*,x*), and assume that

(6.3) qPj(x) = ¢,l(x) + CP2j(x) (0 < j < m - 1)

where i is of the class C(Mq.a ) in some ball IlxI R' and .leve 42j is

any function (say, bounded and measurable) which vanishes on C .

Let uI and u2 be the solutions of the Cauchy problem (6.2) with the

initial conditions 4p and cp2j respectively.

If R' > R0 where R0 depends only on and P , then, by Theorem 3, u ,

is of class C( M ) in some neighborhood N of (t ,x )
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As for u2 , we cam represent it in terms of the fundamental solutions,

namely,

m-1 0 0
(6.4) u2 (t,x) = G G(t~x;Ox O ) * (x

j=0

Since =j(x 0 0 if xO _ C , we can apply Theorem 2 tnd conclude that u2
A

bV ongs to C( M qa+dN O ) if N is sufficiently small neighborhood of (t ,x

Hence:

Theorem 4. Under the assumptions of Theorem 2 and the forgoing assumptions

concerning t he pj , the solution u of the Cauchy problem (6.2) belongs to

C(Mqa+d ) in some sufficiently small neighborhood of (t ,x*)

This theorem may be viewed as an Huygen's principle for the smoothness of

solutions, namely, if the initial values belong to C(M Iq-) in some neighborhood

of C(t*,x*) and are arbitrary elsewhere, and if the decomposition (6.3) holds

in some ball IxI <R I  then the solution u is in a corresponding class

A
C(M qa+d) in some neighborhood of (t*,x*)

6.3. Hyperbolic Systems of equations

The most general hyperbolic systems for whom the Cauchy problem has been

solved by Petrowski (16] and Leray [15] are

nP u N ko+kl1 +...+kn
nE Ak k kn' j

at p  J=l ko+k1+...+knl j  01 n at k k k01 n t 1 ""Nn

k0 < n 1 n

(l<p<N)



where the A's are matrices of order N x 9 with coefficients depending on (t,x)

The condition of hyperbolicity is the following:

For any real vector a 0, the matrix

k0 k I  k n
(e ) = ( E" A  k, .. n0J k 1 " " nn -v n I 6 p

nP k.., jp v 1 n

can be transformed into a matrix

N 0 ... 0 "

0 ... 0

0 0... Nk
,/

where the roots of each polynomaial det. (N4h) are real and distinct.

Consider now the special case k = 1 . If all the nj = 1 then the system

is the one considered by, Courant-Lax [3] an2Lax [14].

The formalism of F3 was extended to hperbolic systems (with k = 1) by

Babitch [1]. An energy inequality analogouB3 to (4.18) is valid also for hyperbolic

systems (Leray [15)). Using these tools, Theorems 2-4 can be extended without

difficulty to hyperbolic systems. Since the proofs are quite analogous and the

methods are the same, we omit all the detaiJls. We only mention here the definition

of a fundamental matrix:

Fundamental matrix with pole at the orlgin is a matrix G = (Ghk) of order

N x N having the following properties:

(a) Each column is a distribution in x , with t as a parameter, which

satisfies (6.5).

(b) For O<i <n -l

G h 0 if i Ah GhI 8 8(x)

t i Jkl t=0 -- h jk k "
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